
Reverse-engineering MSN Messenger’s Video

Conversation Formats

Ramiro Polla

1st revision: September 2006

Contents

1 Introduction 2

2 Transmission 2
2.1 UDP . 2

2.1.1 Code 0x44 - Syn/Ack . 4
2.1.2 Code 0x48 - Authorization 5
2.1.3 Code 0x4a - Audio . 6
2.1.4 Code 0x62 - Video . 6
2.1.5 Code 0x66 - Connection 8

2.2 TCP . 8
2.2.1 Audio Stream . 9
2.2.2 Video Stream . 9

3 Compression 10
3.1 Audio Frames . 10

3.1.1 Analyzing sirenacm.dll 11
3.2 Video Frames . 13

4 More Info 20

1

1 Introduction

This article is an attempt to document the communications protocol used by
Video Conversations in MSN Messenger.

The main goal of reverse-engineering this protocol is to have alternative
means to decode it, and make it easier for open-source softwares to also imple-
ment it and be able to communicate with the official MSN Messenger client.

The data analysed for this article refers to the actual video and audio data
that come in TCP or UDP, and does not document all the steps necessary
to get there (within a Switchboard Session in MSN Messenger). This kind of
information is documented elsewhere on the Internet, and if I have time, I might
document them myself.

This article will first document the Transmission of the data. It will provide
the details to reconstruct Audio and Video data from the TCP or UDP streams.
That reconstructed data can then be fed to a decoder. The second part of this
article will deal with the Compression of such data.

2 Transmission

The network layer protocol used in the data I gathered is the Internet Protocol.
It uses a high numbered port to send, and low numbered port to receive.

Both parties will necessarily be sending and receiving video, or else MSN
Messenger would instead use the Webcam feature, which uses a different kind
of communications protocol. Information on this other protocol can be found
on the same site you’ve downloaded this article.

The transport layer protocol used for transferring the Video Conversation
data between the sender and the receiver is normally the User Datagram Pro-
tocol. Transmission Control Protocol is used mostly if both parties are on the
same sub-network.

2.1 UDP

Since UDP does not guarantee a reliable and in-order delivery of packets, MSN
Messenger implements a way to re-transmit missing or corrupt information.

Each UDP Frame might contain several Packets. A Packet will not be di-
vided in less than one UDP Frame though. From now on, we will deal with
single UDP Packets.

The packet structure is defined by a 10-byte header followed by the payload.
The size of the payload is defined by the size value in the header. Different
kinds of packets (determined by the code value) have different ways to deal with
the header and data.

The packet structure is defined by the following C type structure:

struct vc_udp_header
{

uint8_t code;

2

uint16_t retransmission:5;
uint16_t size:11;
uint8_t frame_chunk:6;
uint8_t nkeyframe:2;
uint32_t timestamp;
uint8_t frame_number;
uint8_t frame_chunks;

};

The naming of the variables is based on the way Video Packets use the header.
Other kinds of data will have a different use for some of the variables, but
the data sizes are the same. The correct meaning of the byte that contains
nkeyframe and frame chunk is not known yet. Having 6 bits for frame chunk
seems overkill since no frames will be so huge. Also, the nkeyframe value is
probably a 1-bit flag. This structure is little-endian and packed. Read Annex
P.

Some conversations start with 4 or 8 packets that I have not been able to
identify the meaning of. Their code is either 0x00 or 0x01. I just ignore them
for the moment. They don’t seem to influence anything in the video or audio
data.

Following is an explanation on each variable inside the structure, along with
their usual values.

code

This byte will determine what kind of data the payload is. Possible values are:

• 0x44 - 01000100 : Syn/Ack.

• 0x48 - 01001000 : Authorization.

• 0x4a - 01001010 : Audio.

• 0x62 - 01100010 : Video.

• 0x66 - 01100110 : Connection.

Each kind of Packet (determined by the header’s code) must be handled
differently.

retransmission

This 5-bit value (0-31) is a counter used in re-transmitted packets. If the receiver
notices the packet has been corrupted in the transmission, it will request a re-
transmission. This value is incremented each time a same packet is sent. If
a re-transmitted packet is received, the former packet must be discarded. Re-
transmitted packets always contain the same data, except for this counter.

3

size

This 11-bit value (0-2048) determines the size of the payload that follows the
header.

frame chunk

This 6-bit value (0-4096) contains the chunk number in a chunked Video Packet.
It start at 0, like in accessing arrays in C.

nkeyframe

This flag (used here as 2-bit, but is probably 1-bit only) is set when a Video
Packet is not a keyframe. In other kinds of data, it means nothing, and is set
to zero.

timestamp

This double word value is the timestamp (obtained with GetTickCount() by the
official MSN Messenger client) in Video Packets. Since Video Packets do not
follow a fixed framerate, it is used to keep the correct time.

In Audio Packets, it is a counter to determine which audio frame (starting
from 0) it is. Since Audio Packets do have a constant playback time (40ms
each), it is not necessary to send an exact timestamp.

frame number

This byte determines the frame number this current packet belongs to. Using
frame chunk and frame chunks, a frame packet can be reconstructed.

It is a counter, and being an unsigned byte, it goes back from 255 to 0.
During a bad transfer, you may be receiving data belonging to many frames
out-of-order.

frame chunks

This number, consistent for all the packets with the same frame number, means
the number of packets a Video Packet was split up into.

2.1.1 Code 0x44 - Syn/Ack

This Packet is sent for every Video Packet received as an acknowledgement, and
vice-versa.

If you have sent a Video Packet and not received an acknowledgement in a
given timeout (not studied by me, but probably just a few seconds), you must
send a re-transmission, and expect an acknowledgement for the re-transmission.

The values set in the header are the size, which is a multiple of 3, the
frame chunk, which is set to 1, and the frame chunks, which is also set to 1.
The rest is set to zero.

4

The payload is made up of 3 bytes for every acknowledged Video Packet.
They correspond to the values in the Video Packet to acknowledge, and are
made up of this (packed) C structure:

struct syn_data
{

uint8_t frame_number;
uint8_t frame_chunk;
uint8_t retransmission;

};

Example Header: 44 c0 00 01 00 00 00 00 00 01
code 0x44
retransmission 0x00
size 0x0006
frame_chunk 0x01
nkeyframe 0x00
timestamp 0x00000000
frame_number 0x00
frame_chunks 0x01

Example Payload:
0a 03 00 0a 02 01

Which is an acknowledgement for the following Video Packets (explained in
a while):

1st Video Packet Header: 62 80 69 03 9a 66 b3 02 0a 04
2nd Video Packet Header: 62 41 4d 02 9a 66 b3 02 0a 04

2.1.2 Code 0x48 - Authorization

This Packet is transmitted a couple of times before the actual Video and Audio
data are sent. All its header values are zero, except for code. Since size is also
zero, it contains no payload.

Example Header: 48 00 00 00 00 00 00 00 00 00
code 0x48
retransmission 0x00
size 0x0000
frame_chunk 0x00
nkeyframe 0x00
timestamp 0x00000000
frame_number 0x00
frame_chunks 0x00

5

2.1.3 Code 0x4a - Audio

This Packet is transmitted for every 40ms of audio, so you should expect 25 of
them per second. Each Audio Packet is 80 bytes long, so the size value in the
header will be a multiple of 80. It is usually either 80 or 160. When more than
one Audio Packet is transmitted at once, the rest are re-transmissions of old
packets, in reverse order. The timestamp value corresponds to the audio frame
number of the new Audio Packet that is being transmitted, and not to its actual
time. Remember that each Audio Packet is exactly 40ms long, so it’s easy to
calculate the exact timestamp. frame chunk and frame chunks are set to 1.

Example Header: 4a 00 14 01 f5 02 00 00 00 01
code 0x4a
retransmission 0x00
size 0x00a0
frame_chunk 0x01
nkeyframe 0x00
timestamp 0x000002f5
frame_number 0x00
frame_chunks 0x01

In this example, size is 160, so there are two Audio Packets. In the payload,
the first 80 bytes correspond to a new Audio Packet, which corresponds to
timestamp. The last 80 bytes are a re-transmission of the Audio Packet that
corresponds to (timestamp - 1).

In every Audio Packet, there are two Audio Frames. So, in the 80 bytes that
make up one Audio Packet, you have 2 Audio Frames, each being 40 bytes. The
first Audio Frame is the first 40 bytes, and the second Audio Frame is the last
40 bytes.

2.1.4 Code 0x62 - Video

This Packet is transmitted for every chunk of a Video Frame. Since most Video
Frames don’t fit in one UDP Packet, they are chunked.

Each packet contains a frame number value to identify which Video Frame
they belong to. That value is an unsigned byte, so it will wrap to 0 after it
reaches 255. That is not a problem, since you will never need to keep so many
frames waiting around to complete transmission. Once you reach, let’s say,
frame number 50, the previous frame that used the same frame number will be
long gone.

In a working Video Conversation, for any given frame number, there should
be frame chunks Packets, with the frame chunk value starting at 0 and ending
at (frame chunks - 1), just like in an array in C.

In case of a bad connection, retransmission of packets with the exact same
frame number and frame chunk will be sent, and they should be used to replace
the previous Packet with the same frame number and frame chunk. In case you

6

receive 2 or more Packets with the same frame number and frame chunk, the
ones with smaller retransmission value should be discarded.

After you have all the chunks of a frame, you can reconstruct the full Video
Frame. Just concatenate the payloads of each Packet belonging to the same
frame number, starting from frame chunk 0 up to (frame chunks - 1). An ex-
ample of such a reconstruction is given in Annex A.

Example Header: 62 80 69 00 9c bf 02 00 0a 03
code 0x62
retransmission 0x00
size 0x034c
frame_chunk 0x00
nkeyframe 0x00
timestamp 0x0002bf9c
frame_number 0x0a
frame_chunks 0x03

Example Header: 62 80 69 01 9c bf 02 00 0a 03
code 0x62
retransmission 0x00
size 0x034c
frame_chunk 0x01
nkeyframe 0x00
timestamp 0x0002bf9c
frame_number 0x0a
frame_chunks 0x03

Example Header: 62 c0 63 02 9c bf 02 00 0a 03
code 0x62
retransmission 0x00
size 0x031e
frame_chunk 0x02
nkeyframe 0x00
timestamp 0x0002bf9c
frame_number 0x0a
frame_chunks 0x03

In this example, we have the 3 chunks that make up frame number 10. Note
that they start with frame chunk 0, and go up to frame chunk 2. The values
nkeyframe, timestamp, frame number, and frame chunks are consistent for all
three packets, since they refer to the same Video Frame. The “not keyframe”
flag is not set, (!!keyframe == keyframe), so it is a keyframe. The size of the
resulting Video Frame is the sum of all Packets’ size: 2486.

7

2.1.5 Code 0x66 - Connection

This Packet is transmitted a couple of times before the actual Video and Audio
data are sent. It is the same string used in the Webcam feature, and depends
on the information exchanged to create the connection between the sender and
the receiver (in MSN Messenger’s Switchboard Session).

Example Header: 66 60 04 01 00 00 00 00 01 01
Example Payload:
"recipientid=100&sessionid=1347\r\n\r\n"

2.2 TCP

TCP is not commonly used. It is mostly if both parties are on the same sub-
network. For this article, I have based myself on one single example file, so it
might be wrong for most other files.

The TCP stream contains Audio and Video streams interleaved. They come
in small packets with 2-byte headers (packed) and corresponding payload.

struct vc_tcp_header
{

uint8_t size;
uint8_t code;

};

Packets with code 0x20 are for the Audio Stream, and Packets with code
0x00 are for the Video Stream. I’ll deal with them as two separate streams that
have no distinction for Frame endings. You should be able to just concatenate
all received packets to their specific streams.

Example:

Header 1: 56 20
Payload: 86 bytes

Header 2: c8 00
Payload: 200 bytes

Header 3: 56 20
Payload: 86 bytes

Header 4: 2a 00
Payload: 42 bytes

Header 5: c8 00
Payload: 200 bytes

Header 6: 56 20
Payload: 86 bytes

Header 7: b7 00
Payload: 183 bytes

From now on, assume the streams are independent and do not contain
vc tcp headers.

8

2.2.1 Audio Stream

The Audio Stream is made by 6-byte headers (packed) followed by their payloads
(usually 80 bytes. I have never seen any other value).

struct vc_tcp_audio_header
{

uint16_t unk00;
uint32_t frame_counter;

}

The first value of the header is unknown and constant. The second value is
the frame counter of the current frame. The frame counter value is the same as
the one named timestamp in the UDP Packets.

Just like in the UDP Audio Packets, there are two Audio Frames for each
frame counter. So, in those 80 bytes, you have 2 Audio Frames, each being 40
bytes. The first Audio Frame is the first 40 bytes, and the second Audio Frame
is the last 40 bytes.

2.2.2 Video Stream

The Video Stream is made by 24-byte headers (packed) followed by their pay-
loads. Before each 24-byte header, there is a 1-byte zero value. I don’t know
what it does, I just ignore it. In this article, I’ll just incorporate it in the beg-
gining of the 24-byte header (altough I shouldn’t). It makes it simpler to read
the stream.

struct vc_tcp_video_header
{

uint8_t unk00;
uint16_t ssize;
uint16_t width;
uint16_t height;
uint16_t nkeyframe;
uint32_t size;
uint32_t fourcc;
uint32_t unk01;
uint32_t timestamp;

};

This header looks mostly like the header used in the Webcam Feature in
MSN Messenger. It contains redundant and somewhat useless information. Its
values are the same as the UDP Video Packets header’s values, without chunk
and retransmission information.

unk00

This is the mentioned unknown zero byte.

9

ssize

This is the size of the 24-byte struct, which is... 24.

width and height

These are the dimentions of the Video Frame. I am not sure, but I believe they
may also be signed. I implemented as unsigned, since I’ve only seen their values
being 320x240.

nkeyframe

This value’s first bit is a nkeyframe value, just like in the UDP Video Packets.
But there is also more information along in that 16-bit int, which I didn’t
understand. I just ignore it, and only use the first bit.

size

This is the size of the Video Frame payload that follows right after this structure.

fourcc

This is the FOURCC for the Video. Should always be ‘WMV3’.

unk01

This is unknown.

timestamp

This is the Video Frame’s timestamp, in milliseconds.

3 Compression

The data that will be dealt with in this section is either an Audio Frame (40
bytes), or a Video Frame (without any header). I’ll explain mostly how to get
them decoded using Win32 API.

3.1 Audio Frames

Audio Frames are codec’d using “MSN Messenger Audio Codec” aka “Siren7”.
The file that codec belongs to is sirenacm.dll, installed in Windows’ system
folder by MSN Messenger.

The sample rate of the wave is 16Khz. There are 50 Audio Frames per
second.

10

3.1.1 Analyzing sirenacm.dll

Looking at the functions this file provides, you’ll see the following:

Siren7_DecodeFrame
Siren7_EncodeFrame
Siren7_InitDecoderContext
Siren7_InitEncoderContext
Siren7_SizeofBitstream
Siren7_SizeofDecoderContext
Siren7_SizeofEncoderContext
DriverProc
_Siren7_DecodeFrame@16
_Siren7_EncodeFrame@16
_Siren7_InitDecoderContext@4
_Siren7_InitEncoderContext@4
_Siren7_SizeofBitstream@4
_Siren7_SizeofDecoderContext@0
_Siren7_SizeofEncoderContext@0

I’ll assume we are not using DriverProc, and interfacing directly with the
codec’s functions. I have also not spent much time understanding how the
EncodeFrame function works. Both formats of each function (stdcall and cdecl)
point to the same place. The C prototypes for each function are:

int Siren7_DecodeFrame(Siren7_DecoderContext *ctx, void *unk,
int32_t *input, float *output);

int Siren7_EncodeFrame(char *p1, char *p2, char *p3,
char *p4); // Not documented

int Siren7_InitDecoderContext(Siren7_DecoderContext *ctx);
int Siren7_InitEncoderContext(Siren7_EncoderContext *ctx);
int Siren7_SizeofBitstream(int BitstreamType);
int Siren7_SizeofDecoderContext(void);
int Siren7_SizeofEncoderContext(void);

Siren7 SizeofDecoderContext and Siren7 SizeofEncoderContext just return
the value 0x280. This is the amount of memory you need to allocate to create
one of such contexts.

Siren7 SizeofBitstream returns 0x28 for BistreamType 0x00, 0x3c for Bit-
streamType 0x01, 0x50 for BitstreamType 0x02, and 0x00 for anything else. I
don’t use it, don’t know when to use it, and sincerely have no idea what they
are, but it was easy to reverse-engineer, so I documented it...

Siren7 InitDecoderContext and Siren7 InitEncoderContext will zero out a
Siren7 (De/En)coderContext and prepare the codec for codec’ing. The memory
for the contexts must be allocated by you (and also freed when not needed
anymore).

Siren7 DecodeFrame is really annoying. The first argument is a pointer
to a Siren7 DecoderContext (previously initialized). The second argument is

11

unknown, but MSN Messenger always passes NULL, so that’s what I do too.
The third argument is the input and it’s really tricky, I’ll get back to it later.
The fourth argument is the output in a 32-bit float waveform. The output size
is 0x500 bytes long (and should be allocated by you).

The input is not passed in a friendly manner. The data you receive in one
Audio Frame is 40 bytes long, which are really 20 signed little-endian 16-bit
ints. The codec expects an input of 80 bytes in 20 signed big-endian 32-bit ints.
So you must convert your Audio Frame input. After you convert it, you can
pass it to the decoder, and the output will contain 320 audio samples in 32-bit
float format.

The following C code/algorithm shows how to initialize a decoder, and get
the output from one Audio Frame (half an Audio Packet), in Win32:

HMODULE sirenacm;
int (__stdcall *Siren7_DecodeFrame)

(Siren7_DecoderContext *, void *, int32_t *, float *);
int (__stdcall *Siren7_InitDecoderContext)

(Siren7_DecoderContext *ctx);
int (__stdcall *Siren7_SizeofDecoderContext)

(void);

Siren7_DecoderContext *ctx;
int sizeof_ctx;
int16_t *sle16i; // signed little-endian 16-bit ints
int32_t sbe32i[20]; // signed big-endian 32-bit ints
float *output;

// 1. Initialization

sirenacm = LoadLibrary("sirenacm.dll");
Siren7_DecodeFrame =

(int (__stdcall *)
(Siren7_DecoderContext *, void *, int32_t *, float *))
GetProcAddress(sirenacm, "Siren7_DecodeFrame");

Siren7_InitDecoderContext =
(DWORD (__stdcall *)(Siren7_DecoderContext *))
GetProcAddress(sirenacm, "Siren7_InitDecoderContext");

Siren7_SizeofDecoderContext =
(DWORD (__stdcall *)(void))
GetProcAddress(sirenacm, "Siren7_SizeofDecoderContext");

sizeof_ctx = Siren7_SizeofDecoderContext;
ctx = malloc(sizeof_ctx);
Siren7_InitDecoderContext(ctx);

output = malloc(0x500);

12

// 2. Convert Audio Frame input

// Very Important!
// Signed Little-Endian 16-bit Int: (MSB) 0xabcd (LSB)
// Signed Big-Endian 32-bit Int: (MSB) 0xSXSXcdab (LSB)
// SX is "sign extend"

sle16i = AudioFrame.data;
for(i = 0 ; i < 20 ; i++)

sbe32i[i] = bswap_16(sle16i[i]);

// 3. Decode Audio

Siren7_DecodeFrame(ctx, NULL, sbe32i, output);

// output now contains 320 audio samples in 32-bit float

// Repeat steps 2 and 3 for every Audio Frame (in order)

// 4. Deinitialization

FreeLibrary(sirenacm);
free(ctx);
free(output);

3.2 Video Frames

Video Frames are codec’d using the “WMV3” codec. The file that codec belongs
to is wmv9vcm.dll, located in MSN Messenger’s folder.

The decoding must start with a keyframe. Subsequent frames can then be
fed to the codec for decompressing one by one. To go back one frame, you must
find the previous keyframe, and decode from it to the point you want.

In this article, I will give an example on how to decode a Video Frame using
VFW API. First, the library must be loaded, then the codec must be opened.
After that, frames can be decompressed, and after you’re done, you must close
the codec, and possibly free the library.

I’m assuming the input and output are 320x240 pixels, but I think using this
codec you might be able to define other output sizes. There is an extra 6 bytes
of data to be passed to the decoder, which is called the Sequence Layer. I always
use these same 6 bytes described below, just like the original MSN Messenger
client. I did not check thoroughly what they mean, and I’ve been told it works
with just the first 4 bytes. The output for 320x240 pixels RGB (3 bytes) needs
320 x 240 x 3 = 230400 = 0x38400 bytes of memory.

// Include needed headers

13

#include <windows.h>
#include <vfw.h>

// Define data that will be needed
struct WMV3BitmapInfoHeaderPlusSequenceLayer
{

BITMAPINFOHEADER BIH;
char SequenceLayer[6];

};

char SequenceLayer[] = { 0x0f, 0xf1, 0x80, 0x01, 0x40, 0x0f };
WMV3BitmapInfoHeaderPlusSequenceLayer WMV3;
BITMAPINFOHEADER BITM;
HMODULE wmv9vcm;
FARPROC DriverProc;
HIC hIC;
char *output;

// Initialize data
memset(&WMV3, 0x00, sizeof(WMV3));
WMV3.BIH.biSize = sizeof(BITMAPINFOHEADER) + 6;
WMV3.BIH.biWidth = 320;
WMV3.BIH.biHeight = 240;
WMV3.BIH.biPlanes = 1;
WMV3.BIH.biBitCount = 0x18;
WMV3.BIH.biCompression = FOURCC_WMV3;
WMV3.BIH.biSizeImage = 0x038400;
memcpy(&WMV3.SequenceLayer, &SequenceLayer,

sizeof(SequenceLayer));

memset(&BITM, 0x00, sizeof(BITM));
BITM.biSize = sizeof(BITMAPINFOHEADER);
BITM.biWidth = 320;
BITM.biHeight = 240;
BITM.biPlanes = 1;
BITM.biBitCount = 0x18;
BITM.biSizeImage = 0x038400;

// Start codec
wmv9vcm = LoadLibrary("wmv9vcm.dll");
DriverProc = GetProcAddress(wmv9vcm, "DriverProc");
ICInstall(ICTYPE_VIDEO, FOURCC_WMV3, (LPARAM) DriverProc,

NULL, ICINSTALL_FUNCTION);
hIC = ICOpen(ICTYPE_VIDEO, FOURCC_WMV3, ICMODE_DECOMPRESS);
ICDecompressBegin(hIC, &WMV3, &BITM);

14

// Assuming "frame" contains a header and the data:
output = malloc(0x038400);
WMV3.biSizeImage = frame->header.size;
ICDecompress(hIC, 0, &WMV3, frame->data, &BITM, output);

// "output" now contains the decoded frame
// Do the above steps as many times as you wish...

//Clean up
ICDecompressEnd(hIC);
ICClose(hIC);
ICRemove(ICTYPE_VIDEO, FOURCC_WMV3, 0);
FreeLibrary(wmv9vcm);
free(output);

15

Annex A: Joining UDP Video Packets

If you’re making a list of the whole stream to create an index, it is a good idea
to first make a list of all the Packets in the correct order, discarding corrupt
packets.

It is best to use a double-linked list, so that you can browse back and forth
through the stream. Also, while populating the list, make sure you read through
starting by the last entry, and not the first. It is natural that the packets you’re
receiving belong to the latest frames, so browsing from the end gives better
performance.

C++ has the STL to make the job of handling lists much easier, but here
I’ll show a double-linked list algorithm example to implement the ordering of
the Packets received in a double-linked list.

// A packet should contain the header and the data.
struct vc_packet
{

vc_udp_header header;
uint8_t *data;

};

// Start list
first_packet = first_vc_packet();
last_packet = first_packet;

// Populate it
while(new_packet = next_packet())
{

for(tmp_packet = last_packet ;
tmp_packet exists ;
tmp_packet = tmp_packet->previous)

{
// Compare new_packet with tmp_packet
if both frame_numbers are the same
{

if both frame_chunk are the same
{

if new_packet’s retransmission is greater
replace tmp_packet with new_packet

else
discard new_packet

}
else if new_packet’s frame_chunk is greater

put new_packet after tmp_packet
}
else if new_packet’s frame_chunk is greater

16

put new_packet after tmp_packet
}

if no replacement ocurred (rare)
{

put new_packet before first_packet
first_packet = new_packet;

}
}

// All packets are ordered, starting from first_packet

After ordering the list, you could go through it removing frames that do not
contain all the chunks.

You could then dump the frame data into another struct, which would con-
tain the full frame information in one single place. Chunk and re-transmission
information are no longer necessary. Here’s an example to extract the data for
one given frame number. It uses C’s memory function prototypes.

struct vc_frame_header
{

uint8_t code;
uint16_t size;
uint8_t nkeyframe;
uint32_t timestamp;
uint8_t frame_number;

};

struct vc_frame
{

vc_frame_header header;
uint8_t *data;

};

// Start frame
vc_frame_header *header = &frame.header;
header->code = first_packet->header.code;
header->size = 0; // Will be incremented for every Packet
header->nkeyframe = first_packet->header.nkeyframe;
header->timestamp = first_packet->header.timestamp;
header->frame_number = first_packet->header.frame_number;
frame.data = NULL;

tmp_packet = first_packet;

while(tmp_packet->header.frame_number == header->frame_number)

17

{
uint16_t newsize = header->size + tmp_packet->header.size;
frame.data = realloc(frame.data, newsize);
memcpy(frame.data + header->size, tmp_packet->data,

tmp_packet->header.size);
header->size = newsize;
tmp_packet = tmp_packet->next;

}

18

Annex P: Packed structures

Most structures that deal with data on disk or being transferred on the network
have to be carefully implemented. In this document they use, unless otherwise
noted, little-endian byte ordering. Note: most cross-platform Audio/Video de-
coding programs don’t use structures for this purpose, based on the fact that
different systems might have different byte ordering and endianess. Some even
have different bit sizes for chars or ints.

Since the structures are normally optimized for space, the data is 1 byte
packed. Pay special attention to the values that do not use up full bytes. To
achieve 1 byte packed data using Microsoft’s C Compiler, use a #pragma pack(
1) statement right before the structure declaration. After the declaration,
remember to reset the byte alignment, using a #pragma pack() statement.

Example:

#pragma pack(1)
struct packed_structure
{

uint8_t one_byte;
uint8_t three_bits:3;
uint8_t five_bits:5;

}; // Totals two bytes
#pragma pack()

To achieve the same using GNU’s C Compiler, use attribute ((packed))
right before the ; symbol closing the structure definition.

Example:

struct packed_structure
{

uint8_t one_byte;
uint8_t three_bits:3;
uint8_t five_bits:5;

} __attribute__((packed)); // Totals two bytes

19

4 More Info

The studies explained in this article were made so that the program “MSN
Webcam Recorder” could support Video Conversations recording and playback.
Except for having an exceptionally ugly and messy source code, it works in
decoding both Webcam streams and Video Conversation streams. It can be
found, along with complete source code, at http://ml20rc.msnfanatic.com

20

